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Another way to map the universe?
Ly-α photon

λrest ≈ 122nm
If emitted at z = 1 then

λobs ≈ 244nm
Map all Ly-α emission at z = 1

by collecting all 244nm γ’s

Varying λobs ⇒ 3-D map
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Many lines to choose from
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Dark Matter

Line Intensity Map traces

Spectrally smooth and bright
free-free and synchrotron emission

Contaminated by
Galactic foregrounds

(High-pass) filter out
smoothly varying modes
Removes Galactic foregrounds and
some cosmological line emission

Currently in path-finder era of LIM experiments
Detection of cosmological line emission
likely must come from cross-correlation
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CMB photons lensed by Dark Matter

Reconstruct projection of
matter fluctuations κ

κ ∼
∫

Line-of-sight
(Smooth Kernel) × (Matter Fluctuations)

κ sensitive only to smoothly varying modes
of matter fluctuations
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LIM . . . . . . . . removes smoothly varying modes

CMB lensing . . . only smoothly varying modes

Symmetries of the universe make this
lack of overlap potentially problematic
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Symmetries of background universe

ρm(x) = ρm

Isotropic and Homogeneous

⇒ ρ̃m(k) ∼ Dirac Delta(k)

ρ̃m(k)ρ̃m(k′) = 0 unless k = k′
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Symmetries of fluctuating universe

ρm(x) = ρm(1 + δm(x)) (statistical field)

Statistically Isotropic and Homogeneous

〈δm(k)δm(k′)〉 = 0 unless k = k′
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Line Intesity Mapping
Loses long-wavelength fluctuations

because of Galactic foregrounds

CMB lensing
Loses short-wavelength fluctuations

because of the projection kernel

Claim by previous works:

Direct correlation of

LIM with CMB lensing

is hopeless
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Short and long wavelength matter
fluctuations are uncorrelated

Remove long-wavelength fluctuations from LIM
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Remove long-wavelength matter fluctuations?
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More filtering
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Detectability in Toy Model

This Work
Lightcone Evol.

Prev. Work
No Lightcone Evol.
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Conclusion
1. Evolution along the lightcone enables LIM to be directly

correlated with CMB lensing despite bright foregrounds.
� We predict this direct correlation will be precisely measured by future LIM experiments like

wider-sky versions of COMAP, CCAT, and HETDEX.
� We also infer, based on conservative calculations for CHIME, that future 21cm experiments

will also be able to precisely measure this direct correlation.

2. More generally, bright foregrounds do not kill
〈LIM × [your favorite projected field]〉,

reviving a lot of LIM science previously assumed hopeless.
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For a statistically homogeneous
field like the unlensed CMB
different Fourier modes are
statistically independent:

〈T unlensed
` T unlensed

L−` 〉 = 0

Lensing of the CMB breaks this
symmetry by inducing correlations
in our lensed CMB:

〈T`TL−`〉 ∼ κL

(κ ≡ −∇2(Lensing Potential)/2)

So correlations that we do see in our map give us information about
the lensing allowing us to build an quadratic estimator (QE) of κ
out of these correlations.

κ̂L ∼
∫
`

T`TL−`
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Experiment CHIME HETDEX COMAP CCAT SPHEREx
Line HI(21cm) Ly-α CO(1→0) [CII] Ly-α

νrest 1420.406 MHz 2456.43 THz 115.27 GHz 1900.5 GHz 2456.43 THz
νobs 617-710 MHz 545-857 THz 26-34 GHz 210-420 GHz 270-400 THz
zobs 1.0 - 1.3 1.9 - 3.5 2.4 - 3.4 3.5 - 8.1 5.2 - 8
R 1700 800 800 100 41

Ωfield [deg2] 31000 540 12 8 200√
Ωpixel 40′ 3′′ 4.5′/

√
8 ln 2 30′′/

√
8 ln 2 6′′
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