Probing the faint universe with line intensity mapping and CMB lensing

Delon Shen

KIPAC Tea — August 12, 2025 arxiv: 2507.17752 with Nick Kokron and Manu Schaan

Dark Matter

Faint Galaxies (Hard to find but informative)

Faint Galaxies

(Hard to find but informative)

High-redshift (Not many galaxies have formed yet)

Faint Galaxies

(Hard to find but informative)

(Not many galaxies have formed yet)

Stuff outside of galaxies

(Where most of the matter resides)

Many lines to choose from

Dark Matter

Contaminated by Galactic foregrounds

Spectrally smooth and bright free-free and synchrotron emission

Contaminated by Galactic foregrounds

Spectrally smooth and bright free-free and synchrotron emission

(High-pass) filter out smoothly varying modes

Removes Galactic foregrounds and some cosmological line emission

Contaminated by

Currently in **path-finder** era of LIM experiments

Detection of cosmological line emission likely must come from **cross-correlation**

(High-pass) filter out smoothly varying modes

Removes Galactic foregrounds and some cosmological line emission

CMB photons lensed by Dark Matter

CMB photons lensed by Dark Matter

CMB photons lensed by Dark Matter

LIM removes smoothly varying modes

LIM removes smoothly varying modes CMB lensing ... only smoothly varying modes

LIM removes smoothly varying modes CMB lensing . . . only smoothly varying modes

Symmetries of the universe make this lack of overlap potentially problematic

Symmetries of background universe

Isotropic and Homogeneous

$$\rho_{m}(\mathbf{x}) = \overline{\rho}_{m}$$

Symmetries of background universe

Isotropic and Homogeneous

$$\rho_{m}(\mathbf{x}) = \overline{\rho}_{m} \Rightarrow \widetilde{\rho}_{m}(\mathbf{k}) \sim \text{Dirac Delta}(\mathbf{k})$$

Symmetries of background universe

Isotropic and Homogeneous

$$\rho_{m}(\mathbf{x}) = \overline{\rho}_{m} \Rightarrow \widetilde{\rho}_{m}(\mathbf{k}) \sim \text{Dirac Delta}(\mathbf{k})$$

$$\widetilde{\rho}_{\it m}({\it k})\widetilde{\rho}_{\it m}({\it k'})=0$$
 unless ${\it k}={\it k'}$

Symmetries of fluctuating universe

Statistically Isotropic and Homogeneous

$$\rho_{m}(\mathbf{x}) = \overline{\rho}_{m}(1 + \delta_{m}(\mathbf{x}))$$
 (statistical field)

Symmetries of fluctuating universe

Statistically Isotropic and Homogeneous

$$\rho_{m}(\mathbf{x}) = \overline{\rho}_{m}(1 + \delta_{m}(\mathbf{x}))$$
 (statistical field)

$$\langle \delta_{\it m}({\it k}) \delta_{\it m}({\it k'}) \rangle = 0$$
 unless ${\it k} = {\it k'}$

Short-wavelength and Long-wavelength |s matter fluctuations are uncorrelated

Line Intesity Mapping Loses long-wavelength fluctuations because of Galactic foregrounds

Line Intesity Mapping Loses long-wavelength fluctuations because of Galactic foregrounds

CMB lensingLoses *short-wavelength* fluctuations because of the projection kernel

Line Intesity M Claim by previous works: Direct correlation of LIM with CMB lensing is hopeless me projection kernel

Short and long wavelength matter fluctuations are uncorrelated

Short and long wavelength matter fluctuations are uncorrelated

Remove long-wavelength fluctuations from LIM

Remove long-wavelength matter fluctuations?

Short and long wavelength matter fluctuations are uncorrelated

Remove long-wavelength fluctuations from LIM

Remove long-wavelength matter fluctuations?

No, observations restricted to past lightcone

□ Line-emission × iviatter Fluctuation

 \sim Line-emission \times Matter Fluctuations

 $\sim t \times \sin(x)$

11/15

 \sim Line-emission \times Matter Fluctuations $\sim t \times \sin(x) \frac{\text{No Lightcone Evol.}}{t} \bar{t} \sin(x)$

— No Lightcone Evolution

 \sim Line-emission \times Matter Fluctuations

 \sim Line-emission \times Matter Fluctuations

...as you filter out more long-wavelength modes?

High pass filter cutoff $[\mathsf{Mpc}^{-1}]$

...as you filter out more long-wavelength modes?

Conclusion

- 1. Evolution along the lightcone enables LIM to be directly correlated with CMB lensing despite bright foregrounds.
 - We predict this direct correlation will be precisely measured by future LIM experiments like wider-sky versions of COMAP, CCAT, and HETDEX.
 - We also infer, based on conservative calculations for CHIME, that future 21cm experiments will also be able to precisely measure this direct correlation.
- 2. More generally, bright foregrounds do not kill

 $\langle LIM \times [your favorite projected field] \rangle$,

reviving a lot of LIM science previously assumed hopeless.

Extra

Unlensed CMB: Statistically Homogeneous

For a statistically **homogeneous** field like the unlensed CMB different Fourier modes are statistically independent:

$$\langle T_{\ell}^{\text{unlensed}} T_{\ell-\ell}^{\text{unlensed}} \rangle = 0$$

field like the unlensed CMB different Fourier modes are statistically independent:

For a statistically **homogeneous**

$$\langle T_{\ell}^{\text{unlensed}} T_{\ell-\ell}^{\text{unlensed}} \rangle = 0$$

Lensing of the CMB breaks this symmetry by inducing correlations in our lensed CMB:

$$\langle T_{\ell} T_{\mathbf{L}-\ell} \rangle \sim \kappa_{\mathbf{L}}$$

$$(\kappa \equiv -\nabla^2(\text{Lensing Potential})/2)$$

$$\langle T_{\ell} T_{\mathbf{L}-\ell} \rangle \sim \kappa_{\mathbf{L}}$$

For a statistically **homogeneous** field like the unlensed CMB different Fourier modes are statistically independent:

$$\langle \mathcal{T}_{\ell}^{\text{unlensed}} \mathcal{T}_{\mathbf{L}-\ell}^{\text{unlensed}} \rangle = 0$$

Lensing of the CMB breaks this symmetry by inducing correlations in our lensed CMB:

So correlations that we do see in our map give us information about the lensing allowing us to build an **quadratic estimator** (QE) of κ out of these correlations.

$$\hat{\kappa}_{\mathbf{L}} \sim \int_{\ell} T_{\ell} T_{\mathbf{L}-\ell}$$

Experiment	CHIME	HEIDEX	COMAP	CCAI	SPHEREX
Line	HI(21cm)	Ly- $lpha$	$CO(1{ o}0)$	[CII]	Ly- $lpha$
$ u_{ m rest} $	1420.406 MHz	2456.43 THz	115.27 GHz	1900.5 GHz	2456.43 THz
$ u_{ m obs}$	617-710 MHz	545-857 THz	26-34 GHz	210-420 GHz	270-400 THz
$z_{ m obs}$	1.0 - 1.3	1.9 - 3.5	2.4 - 3.4	3.5 - 8.1	5.2 - 8
${\cal R}$	1700	800	800	100	41
$\Omega_{\rm field} [{ m deg}^2]$	31000	540	12	8	200
$\sqrt{\Omega_{ m pixel}}$	40'	3"	$4.5'/\sqrt{8\ln 2}$	$30''/\sqrt{8\ln 2}$	6''

COMMAD

CDLIEDE

LIETDEV

CLUMAE

Detectability of 〈LIM×CMB Lensing〉

Limber vs. Our Approximation Effect on Angular Distribution of SNR

Noise Dominated vs. Full Covariance Effect on **Detectability** 1.2 **CHIME HETDEX COMAP CCAT** SNR[Noise Dom. SNR[Full Cov.] **SPHEREX** 1.1 1.0 10^{-2} 10^{-1} $\Lambda \left[\mathsf{Mpc}^{-1} \right]$

\langle Foreground Filtered LIM \times CMB Lensing \rangle

