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Galaxies trace Dark Matter

EaintCoatas

(Hard to find but informative)

(Not many galaxies have formed yet)

(Where most of the matter resides)
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Another way to map the universe?

Ly-a: photon
Arest = 122nm

If emitted at z = 1 then
Aobs = 244nm

Map all Ly-a emission at z =1
by collecting all 244nm ~'s
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Varying Aohs = 3-D map
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Line Intensity Map traces Dark Matter

Contaminated by
Galactic foregrounds

Spectrally smooth and bright
free-free and synchrotron emission
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Line nsity Map traces Dark Matter
Contaminated by

Currently in path-finder era of LIM experiments

Detection of cosmological line emission
likely must come from cross-correlation

(High-pass) filter out
smoothly varying modes

Removes Galactic foregrounds and
some cosmological line emission
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CME photons lensed by Dark Matter
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CME photons lensed by Dark Matter

Reconstruct projection of
matter fluctuations k
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photons lensed by Dark Matter

N K~ / (Smooth Kernel) x (Matter Fluctuations)
Line-of-sight

K sensitive only to smoothly varying modes
of matter fluctuations

M &~ . "
Reconstruct projection of
matter fluctuations k

5715



removes smoothly varying modes
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LIM........ removes smoothly varying modes
CMB lensing ... only smoothly varying modes
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LIM........ removes smoothly varying modes
CMB lensing ... only smoothly varying modes

Symmetries of the universe make this
lack of overlap potentially problematic
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Symmetries of background universe

Isotropic and Homogeneous

pPm(X) = P
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Symmetries of background universe

Isotropic and Homogeneous

Pm(X) = Py = pm(k) ~ Dirac Delta(k)

om(K)pm(k") = 0 unless k = k'




Symmetries of fluctuating universe

Statistically Isotropic and Homogeneous

Pm(X) = Pm(1 + dm(x)) (statistical field)



Symmetries of fluctuating universe

Statistically Isotropic and Homogeneous

Pm(X) = Pm(1 + dm(x)) (statistical field)

(Om(k)om(k’)) = 0 unless k = k’
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because of Galactic foregrounds



Line Intesity Mapping
Loses long-wavelength fluctuations
because of Galactic foregrounds

CMB lensin
Loses short-wavelength fluctuations
because of the projection kernel

9,15



= projection kernel



= projection kernel
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ine QAP
s projection kernel
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Short and long wavelength matter
fluctuations are uncorrelated
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Short and long wavelength matter
fluctuations are uncorrelated

Remove long-wavelength fluctuations from LIM

0

Remove long-wavelength matter fluctuations?

No, observations restricted to past lightcone |

18/135




@ Space

‘ "ra

-}

N\
\Q"‘e
\%
e

Time

Intensity(x, t)
~ Line-emission x Matter Fluctuations

11715



@  Space

Time

o)
\Q“‘z
(/‘
&,
e

Intensity(x, t)
~ Line-emission x Matter Fluctuations

~ t x sin(x)
11/15



@  Space

Redshift

2
S
(/’
N
%,

N

Time

Intensity(x, t)
~ Line-emission x Matter Fluctuations

~ t X sin(x)
11/15



Time

No LiGHTCONE <%
EvoLuTIiON \&610
(Used by previous works) \O/,Q

Intensity(x, t)

~ Line-emission x Matter Fluctuations
No LiGHTCONE EvoL. — .
) t sin(x)

~ t X sin(x

Observed Intensity

Line Intensity Map

\VANYA
VvV V

Position

= NO LIGHTCONE EVOLUTION

11715



Line Intensity Map
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© Crnaca
I 1°%(x) ~ K (X)0m(X)

1% (k) ~ [, Kuni(k = q)dm(q)

(Any mode of LIM D long-wavelength matter fluctuations)
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How detectable
is direct correlation...

More detectable

Detectability in Toy Model

This Work
LicHTCONE EVOL.

Prev. Work .
No LIGHTCONE EVOL.]

More filtering ————»

...as you filter out more
long-wavelength modes?
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How detectable
is direct correlation...

Detectability of (LIM xCMB Lensing)
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How detectable
is direct correlation...

Detectability of (LIM xCMB Lensing)

...as you filter out more
long-wavelength modes?

JCHIME
JHETDEX

JCOMAP
iccaT

SPHEREXx
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Detectability of (LIM xCMB Lensing )
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Next steps for

pathfinder experiments:

More sky area
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...as you filter out more
long-wavelength modes?



Sky area to detect(LIM xCMB Lensing)
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Sky area to detect(LIM xCMB Lensing)
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Sky area to detect(LIM xCMB Lensing)
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Sky area to detect(LIM xCMB Lensing)
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Conclusion

1. Evolution along the lightcone enables LIM to be directly
correlated with CMB lensing despite bright foregrounds.

o We predict this direct correlation will be precisely measured by future LIM experiments like
wider-sky versions of COMAP, CCAT, and HETDEX.

o We also infer, based on conservative calculations for CHIME, that future 21cm experiments
will also be able to precisely measure this direct correlation.

2. More generally, bright foregrounds do not Kkill
(LIM x [your favorite projected field]),

reviving a lot of LIM science previously assumed hopeless.
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We can estimate lensing potential since
lensing breaks symmetry of CMB

Lensed CMB: Stotistieaty=Homozemeon s

Angular Scale




For a statistically homogeneous
field like the unlensed CMB
different Fourier modes are
statistically independent:

unlensed —unlensed\ _
<T£ TL—E > =0




For a statistically homogeneous  Lensing of the CMB breaks this
field like the unlensed CMB symmetry by inducing correlations
different Fourier modes are in our lensed CMB:

statistically independent:

(TeTi—p) ~ K1

unlensed —unlensed\ _
<T£ TL—E > =0

(k = —V?*(Lensing Potential)/2)



For a statistically homogeneous
field like the unlensed CMB
different Fourier modes are
statistically independent:

< Tunlensed Tunlenbed> 0
P —

Lensing of the CMB breaks this
symmetry by inducing correlations
in our lensed CMB:

(TeTi—p) ~ K1

(k = —V?(Lensing Potential)/2)

So correlations that we do see in our map give us information about
the lensing allowing us to build an quadratic estimator (QE) of x

out of these correlations.

RL ~ /TeTL ;
,




Experiment CHIME HETDEX COMAP CCAT SPHEREx
Line HI(21cm) Ly-« CO(1—-0) [l Ly-«

Vrest | 1420.406 MHz  2456.43 THz 115.27 GHz ~ 1900.5 GHz = 2456.43 THz
Vobs | 617-710 MHz  545-857 THz  26-34 GHz  210-420 GHz 270-400 THz

Zobs 1.0-1.3 1.9-35 2.4-34 35-8.1 52-8
R 1700 800 800 100 41
Qiera [deg?] 31000 540 12 8 200

/ pixel 40/ 3" 4.5'/v/8n2  30"/v/8In2 6"
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SNR(Filter out |ky| < A)

Detectability of (LIMxCMB Lensing)
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d(SNR?)/dIn¢

Noise Dominated vs. Full Covariance Effect on Angular Distrbution of SNR
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SNR[Noise Dom.]

SNR[Full Cov.]
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CHIME

(Foreground Filtered LIM x CMB Lensing)
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