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CMB lensing
probes different
scales and
redshifts from
other direct
probes!

1000

10

Large scales

Small scales

Primary CMB \(IndireCt)

CMB Lensing Spectrum N\

CMB Lensing x Galaxies

P‘res‘tc;n‘—l—‘2‘3‘

(Direct)

Weak Lensing

10

Early times

Late times

4,33



Indirect

Direct
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S8 "Matter Clumpyness"

CMB: Planck CMB aniso.

CMB: Planck CMB aniso. (+Aje,s marg.)
CMB: WMAP+ACT CMB aniso.

CMBL: Planck CMB lensing + BAO

CMBL: SPT CMB lensing + BAO

CMBL: ACT CMB lensing + BAO
CMBL: ACT+Planck CMB lensing + BAO
WL: DES-Y3 galaxy lensing+clustering
WL: KiDS-1000 galaxy lensing+clustering
HSC-Y3 galaxy lensing (Fourier) + BAO
HSC-Y3 galaxy lensing (Real) + BAO

CX: SPT/Planck CMB lensing x DES

CX: Planck CMB lensing x DESI LRG

CX: Planck CMB lensing x unWISE

Madhavacheril+23
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How much lensing...
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How much lensing...
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T(0): Fluctuations

Statistically Gaussian, Homogeneous, Isotropic

Power

Angular Scale
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UnIensed CMB V (Lensing Potential) ~ Lensed CMB

Sherwin
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Unlensed CMB V (Lensing Potential)
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Tlensed (fpy — unlensed (4 T ensing Potential(f1)})
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UnIensed CMB V(Lensing Potential) Lensed CMB

Sherwin

Tiensed () = unlensed (f 4 (T ensing Potential(f)})

Lensing Potential(fn) ~ / (Redshift Kernel) x (Matter Fluctuations)
Line of Sight
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VUnIensed CMB V(Lensing Potential) Lensed CMB

Sherwin

Tiensed () = unlensed (f 4 (T ensing Potential(f)})

Lensing Potential(fn) ~ / (Redshift Kernel) x (Matter Fluctuations)
Line of Sight

Lensing Power Spectrum ~ / (Redshift Kernel)? x (Matter Power Spectrum)

9,33



We can estimate lensing potential since
lensing breaks symmetry of CMB
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We can estimate lensing potential since
lensing breaks symmetry of CMB

Unlensed CMB: Statistically Homogeneous
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For a statistically homogeneous
field like the unlensed CMB
different Fourier modes are
statistically independent:

nlensed qunlensed\ _
(Te T =0
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For a statistically homogeneous  Lensing of the CMB breaks this
field like the unlensed CMB symmetry by inducing correlations
different Fourier modes are in our lensed CMB:

statistically independent:

(TeTi—p) ~ K1

nlensed qunlensed\ _
(Te T =0

(k = —V?*(Lensing Potential)/2)
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For a statistically homogeneous
field like the unlensed CMB
different Fourier modes are
statistically independent:

nlensed qunlensed\ _
(Te T =0

Lensing of the CMB breaks this
symmetry by inducing correlations
in our lensed CMB:

(TeTi—p) ~ K1

(k = —V?(Lensing Potential)/2)

So correlations that we do see in our map give us information about
the lensing allowing us to build an quadratic estimator (QE) of x

out of these correlations.

RL ~ /TeTL—e
.

12733



How much lensing...
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What happened?
Rp o~ /eTe Tie = (RLRp) ~ /M<T£ TeeT oT 1ye)

The lensing contribution to (TTTT) is small because lensing is a
perturbation of the Gaussian random field T'lersed

(TTTT) ~ Large Gaussian Contribution + Lensing Term + . ..

TV
Present even if no lensing

= (ki) ~ Gaussian Bias + Lensing Power Spectrum + . ..

14733



Furthermore, there's extra stuff in our temperature maps
1. Foregrounds (CIB, SZ, ...)

2. Detector noise (for this talk, will focus on this)
That are added to our maps:

TE _ T%ensed + N?etector

!Generically NP®**°t°T s 5 inhomogeneous non-Gaussian field so has contributions beyond the

“Gaussian noise”, but for upcoming wide-field CMB maps, this detector noise can be expanded around

a homogeneous Gaussian field.
15,35



Furthermore, there's extra stuff in our temperature maps

1. Foregrounds (CIB, SZ, ...)
2. Detector noise (for this talk, will focus on this)
That are added to our maps:

TE _ T%ensed + N%)etector
This changes (TTTT) by also contributing to the Gaussian bias':

= (ki) ~ Noise Bias + Lensing Power Spectrum + . ..

!Generically NP®**°t°T s 5 inhomogeneous non-Gaussian field so has contributions beyond the
“Gaussian noise”, but for upcoming wide-field CMB maps, this detector noise can be expanded around

a homogeneous Gaussian field.
15,35
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On small scales, even a tiny misestimate of Gaussian bias leads to a huge bias in estimated (k)
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A key challenge in measuring the
CMB lensing spectrum is estimating and

subsequently removing this Gaussian
bias?.

2Stated more generally, we are trying to extract the non-Gaussian component of the 4-point
function. This is a problem that appears generally in cosmology and the method we propose in
principle is applicable to other areas where optimal estimation of the connected trispectrum/4-point

function is of interest such as large scale structure.
17735



A quick reminder: For a 1-D Gaussian

random variable X with mean 0 and vari-

dance O'2

(X) =0 (X%) = “f_ 10 anaogue o
(X*) = 30"
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A toy model for estimating CMB lens-
ing spectra is estimating L < o for a
nearly Gaussian variable X
X — O X2 — 2 1D analogue of
(X)=0 (X%) =32 0.,

power spectrum
and

<X4> — 30‘4 -+ KC CMB lensing

) W~ spectrum
“<TTTT)”\j“ Noise Bias”

19/335



The most naive way to remove to
remove this Gaussian bias from (X*)

28 /33



The most naive way to remove to
remove this Gaussian bias from (X*)

1. Assume some theoretical model for the variance o2

28 /33
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1. Assume some theoretical model for the variance o2

—

2. Subtract it from the estimated 4-point function from data (X*).

~ —

ICnaivo — <X4> - 304
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The most naive way to remove to
remove this Gaussian bias from (X*)

1. Assume some theoretical model for the variance o2

—

2. Subtract it from the estimated 4-point function from data (X*).

A~

ICnaivo - <)</4\> - 304

Features: (1) noisy relative to minimum variance estimator and (2)
maximally sensitivty to theoretical mismodelling

28 /33



The optimal way to remove to remove
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1. Assume some theoretical model for the variance o2

2. Derive the optimal way to combine theoretical model with the
variance estimated from data to estimate the Gaussian bias

—

3. Subtract it from the estimated 4-point function from data (X*).

—
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The optimal way to remove to remove
this Gaussian bias from (X*)

1. Assume some theoretical model for the variance o2

2. Derive the optimal way to combine theoretical model with the
variance estimated from data to estimate the Gaussian bias

o~

3. Subtract it from the estimated 4-point function from data (X*).
,Copt,‘ = <)</4\> - 3[6-0pt(0-27 data)]4

Features: (1) is the minimum variance estimator but (2) still has
some sensitvity to theoretical mismodelling

21733






Limitations of the Standard RDN()

» Relies on computationaly expensive simulations
» Estimated noise bias still sensitive to small errors simulation

» Small error in noise bias is still large error in CMB lensing power spectrum

» In ACT DR6 (Qu+23), they could not simulate the complex
instrument noise well enough to have unbiased measurements of
the lensing spectrum at L ~ 800

22733


https://arxiv.org/abs/2304.05202

Origin of the Gaussian bias

Recall that

(RLRp) ~ // (TeTo—eT_o T_110r)
o
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Origin of the Gaussian bias

Recall that

(RLRp) ~ // (TeTo—eT_o T_110r)
o

» Gaussian bias from the 0" order contribution to (TTTT)
» So in the integral, the Gaussian bias contributions come from terms where

< szlensed Ttlirllznsed Tgrzllensed Tgrilj_nes/ed> 7& 0 (*)

> Statistical homogeneity implies that ( Tynlensed Tunlensedy  §(D)(¢ 4 ¢/)
» Thus, by Eq. (), the Gaussian bias comes from terms in [, , where

23733



Our Method: Ignore £ = ¢’ terms

Our estimator of <I<LI€> ~ // <Tg TL_g T_gl T_L+gl>
(224

(for practical purposes) ~ // (TeTo o T 0T 1 1p) — /(Tg ToeT T _1y0)
o ¢

P J/

WV Vo
The standard (&#) €= terms

Both components can be computed efficiently using FFT!

24/33






Features of our method

» Relies only on data thus

1. Very fast to compute relative to standard RDN(
2. Completely insensitive to errors in simulations
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Features of our method

» Relies only on data thus

1. Very fast to compute relative to standard RDN(
2. Completely insensitive to errors in simulations

» One can reason using the toy model that the variance of our
method is asymptotically equivalent to the variance of the
the optimal minimum variance estimator.

23733
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: Lensing Power Spectrum (kk)
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Frac. Residual

1077 5

— =

10_8_- —F— Naive Theory Subtraction

—— Standard RDN®)
] —— Our Method

In an idealized situation when we understand everything

Lensing Power Spectrum (kk)

1% error on Gaussian Bias

0.1% error on Gaussian Bias
T T

102 108
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On real data, a key
limitation for
standard methods is
modeling complex
instrument noise
sufficiently
accurately.

ACT DR5 IVar Map

Extreme
Noise Scenario

Typical
Noise Scenario

27733



Frac. Residual

1077 3
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Once we have realistically inhomogeneous instrument noise.

1 —F— Naive Theory Subtraction
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: —— Our Method
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0.1% error on Gaussian Bias

102 103
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Frac. Residual

Once we have realistically inhomogeneous instrument noise.

-7 |
10 Requires some assumed
] total CMB spectrum
108 - —F— Naive Theory Subtraction
] — Standard RDN(®
1 == Our Method
0.5
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Frac. Residual

10~7

10—8

0.5

Once we have realistically inhomogeneous instrument noise.

Requires some assumed
total CMB spectrum

Hard to get sufficiently
accurate these days

—F— Naive Theory Subtraction
—— Standard RDN()
—— Our Method

0.1
-0.1

1% error on Gaussian Bias

—-0.5

0.1% error on Gaussian Bias

102 103
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Conclusion

» We propose a novel estimator of the CMB lensing power spectrum which
relies only on data making this estimator

1. Fast to compute
2. Insensitive to errors in simulations and thus unbiased to small scales

» This estimator’s noisiness is asymptotically equivalent to the optimal
estimator.

» We showed this estimator is robust to the presence realistic complications
like inhomogeneous instrument noise

» Can also show our estimator is as robust to masking as standard methods, happy to
talk about this if people interested!

29/33
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Our I\/Iethod

————

(Q/%)

1 ________ //\ el

Recall HLNfz TeT[_ e Z

Gipii) o S tecFe R oy b ] L
Quadrlla.temx‘ Parallelogr ams\\ Non—
Parallelograms

(Contains contributions to lensing

spectrum and Gaussian bias) (Contains contributions to
lensing spectrum only)



Our Method

(kpip)~ DX KT Sy b
Quadrlla.terax‘ Parallelogr ams\\ Non—
Parallelograms

(Contains contributions to lensing

spectrum and Gaussian bias) (Contains contributions to
lensing spectrum only)

Idea: ignore all the quadrilaterals that do contribute to the Gaussian
bias, the parallelograms



Masking introduces additional
mode couplings and a mean-field
that have to be handled. Here we
show that our method is as good
as the standard method in
presence of masking! So usual
methods to handle additional
mode couplings should still work.

Frac. Residual
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Correlation Coefficient (Cr, Cr/)
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Non-trivial correlation structure due to
Gaussian bias

Correlation Coefficient (Cr, Cp)

L/
1

1

L

Methods to remove Gaussian bias should
also remove non-trivial correlation structure
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In our method we implicitly assume that
noise inhomogeneities can be expanded
perturbatively around a homogeneous limit.
However, once this is not true, for example
in the extreme inhomogeneous noise
scenario, our method breaks down while
the standard RDN(©), which does not make
this assumption, still works. However we
do expect the assumption that noise
inhomogenities are small to hold for
current and upcoming wide-field CMB
maps.

1077

Frac. Residual

Unmasked, Extreme Anisotropic Noise

(kr)

;
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To intuitively understand the properties
of (1) the current method and (2) the
method we will propose to remove the
Gaussian bias, lets consider a toy
model for optimal trispectrum

estimation>.

3QOriginally presented in Smith+18


https://arxiv.org/abs/1502.00635

In Toy Model

Consider a generic weakly
non-Gaussian random variable X
with

» /Zero mean

» Some assumed variance o2

» Small kurtosis K < o* we
wish to estimate

() = o
(XY =30"+ K



In Toy Model

Consider a generic weakly
non-Gaussian random variable X
with

» /Zero mean

» Some assumed variance o2

» Small kurtosis K < o* we
wish to estimate

() = o
(XY =30"+ K

In CMB Lensing

Consider the lensed CMB

temperature map, a weakly

non-Gaussian random field with

> (T)=0

» Some assumed power
spectrum

» Small connected
trispectrum (induced by
lensing) we wish to estimate
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N
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Let {x;} be N independent realizations of the random variable X. Generically, an
estimator of the Kurtosis K will look like

N
Z G = (Sample 4-pt function) —

(Estimate of Gaussian Bias)
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Let {x;} be N independent realizations of the random variable X. Generically, an
estimator of the Kurtosis K will look like

N
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Let {x;} be N independent realizations of the random variable X. Generically, an
estimator of the Kurtosis K will look like

N
Z G = (Sample 4-pt function) — (Estimate of Gaussian Bias)
Estimate of Gaussian Bias | NxVar(K) 0? =02, —¢| In CMB Lensing
Gnaive = 3‘74 960'8 AK ~ € Ng?l)eory
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Let {x;} be N independent realizations of the random variable X. Generically, an
estimator of the Kurtosis K will look like

N
Z G = (Sample 4-pt function) — (Estimate of Gaussian Bias)
Estimate of Gaussian Bias | NxVar(K) 0? =02, —¢| In CMB Lensing
Qnaive = 3‘74 960'8 AK ~ € Ng?l)eory
gopt = % ,-X,2 — 30 2408 AK ~ €2 Current Standard
Gan = iy Sois D8 | 2405+ O(1/N) | AK =0 Our method




In Toy Model

The alternative estimator for
the kurtosis K,;; has equivalent
performance to optimal kurotsis
estimator for large N but is
completely insensitive to
mismodelling of the variance o



In Toy Model In CMB Lensing

The alternative estimator for Our estimator for the CMB

the kurtosis K,;; has equivalent  lensing power spectrum (k)

performance to optimal kurotsis asymptotically has equivalent

estimator for large N but is performance to the optimal

completely insensitive to trispectrum estimator but is

mismodelling of the variance 0> completely insensitive to
mismodelling of the observed
CMB temperature power
spectrum.
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5 1 , 3

Kaw = 35 2 5= 1y 2= 0%
i i#]j

Since x; is statistically independent

from x; when i # j, the second

term yields only the the

disconnected Gaussian bias.

In other words, instead of
assuming some o2, you estimate it
directly from data.



In Toy Model

- 1 ) 3

]Calt - NZX}_AKN— 1) ZXIQXJ2
i i#]

Since x; is statistically independent

from x; when i # j, the second

term yields only the the

disconnected Gaussian bias.

In other words, instead of
assuming some o2, you estimate it
directly from data.

In CMB Lensing

Recall that
(RLRT) ~ / (TeTi—e T_o T_110)
o0

Our propsed estimator generalization of
the toy model’s IC

<Iili> ~ <f:df2> — /< Tg TL,g T,g T7L+£>

)
Similar to the toy model case, the second
term contains all the combination of (£, £')
contributing to [, ,, which contain a
disconnected Gaussian bias.
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estimating the kurtosis



What people usually do to estimate the Gaussian bias

In Toy Model In CMB Lensing
A 602 4 Let 2% be the QE using data for one temperature
Gopt = N ZX’Z — 30 map and simulations for the other. Similar for &%

The optimal way to combine RDN(LO) = < (R 7% + CL(R®, &%)
a theoretical prediction . isd jusd

for variance o2 and the +CL<h >$J Cu(R >5J
sample variance when —(Cu(r™ /%) + (R, ))>s,5/

estimating the kurtosis
The optimal way to combine simulations of CMB

maps with realistic complications (instruments
noise, foregrounds, etc.) and actual maps when
estimating the connected trispectrum



What people usually do to estimate the Gaussian bias

In Toy Model In CMB Lensing
A 602 4 Let 2% be the QE using data for one temperature
Gopt = N ZX’Z — 30 map and simulations for the other. Similar for &%

The optimal way to combine RDN(LO) ={(C L (R

a theoretical prediction .
. 2 +CL<h

for variance o° and the

sample variance when —(Cu (&

estimating the kurtosis

( ds Asd)
Cu(#*, &)
A+ CUR, A7),

The optimal way to combine simulations of CMB
maps with realistic complications (instruments
noise, foregrounds, etc.) and actual maps when
estimating the connected trispectrum

R%) +
)

For modern data, simulations (1) expensive and (2) require modelling everything to exquisite accuracy



