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Initial density perturbation in
matter collapses gravitationally to

form cosmic structure
The dynamics of structure formation (e.g. how clumpy
matter is over time) carries a lot of information about
physics (Σmν, nature of dark energy, properties of dark

matter, . . . )
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(1) Fit ΛCDM to
CMB (z ≈ 1100)
then predict
clumpyness of
matter today
(indirect) (2) Measure actual

clumpyness of
matter today

(direct)
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CMB lensing
probes different

scales and
redshifts from
other direct

probes!

Preston+23(Indirect)

(Direct)

Primary CMB

CMB Lensing Spectrum

RSD/
Clustering Weak Lensing

CMB Lensing x Galaxies
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0.70 0.75 0.80 0.85 0.90

CMB: Planck CMB an is o.
CMB: Planck CMB an is o . (+Ale ns m a rg .)
CMB: WMAP+ACT CMB an is o.

WL: DES-Y3  ga la xy  le ns ing+clus te ring
WL: KiDS-1000  ga la xy  le ns ing+clus te ring
HSC-Y3  ga la xy  le ns ing  (Fourie r) + BAO
HSC-Y3  ga la xy  le ns ing  (Re a l) + BAO
CX: SPT/Planck CMB le ns ing  x  DES
CX: Planck CMB le ns ing  x  DESI LRG
CX: Planck CMB le ns ing  x  unWISE

S8 "Matter Clumpyness"

Indirect

Direct
CMBL: Planck CMB lensing +  BAO
CMBL: SPT CMB lensing +  BAO
CMBL:  ACT CMB lensing +  BAO
CMBL:  ACT+ Planck CMB lensing +  BAO

Madhavacheril+23
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CMB Lensing Power Spectrum
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Lensing Spectrum Estimator ∼
CMB Lensing Power Spectrum + Noise Bias
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Noise bias limited
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T(θ): Fluctuations
Statistically Gaussian, Homogeneous, Isotropic

Angular Scale

Po
we

r
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LSS CMB

lensed by
LSS
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LSS CMB
lensed by

LSS
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Unlensed CMB (Lensing Potential)

+ =

Lensed CMB

Sherwin

Tlensed(n̂) = Tunlensed(n̂ +∇{Lensing Potential(n̂)})

Lensing Potential(n̂) ∼
∫

Line of Sight
(Redshift Kernel) × (Matter Fluctuations)

Lensing Power Spectrum ∼
∫∫

(Redshift Kernel)2 × (Matter Power Spectrum)
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We can estimate lensing potential since
lensing breaks symmetry of CMB

.

Unlensed CMB: Statistically Homogeneous

.
Angular Scale

Po
we

r

.
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Angular Scale

Po
we

r

We can estimate lensing potential since
lensing breaks symmetry of CMB

Lensed CMB: Statistically Homogeneous

.
.

Scale of hot/cold spots

magnified by lensing
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For a statistically homogeneous
field like the unlensed CMB
different Fourier modes are
statistically independent:

⟨Tunlensed
ℓ Tunlensed

L−ℓ ⟩ = 0

Lensing of the CMB breaks this
symmetry by inducing correlations
in our lensed CMB:

⟨TℓTL−ℓ⟩ ∼ κL

(κ ≡ −∇2(Lensing Potential)/2)

So correlations that we do see in our map give us information about
the lensing allowing us to build an quadratic estimator (QE) of κ
out of these correlations.

κ̂L ∼
∫
ℓ

TℓTL−ℓ
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Naive way to get lensing power spectrum:
look at ⟨κ̂κ̂⟩
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What happened?

κ̂L ∼
∫
ℓ

TℓTL−ℓ ⇒ ⟨κ̂Lκ̂
∗
L⟩ ∼

∫
ℓ,ℓ′

⟨TℓTL−ℓT−ℓ′T−L+ℓ′⟩

The lensing contribution to ⟨TTTT⟩ is small because lensing is a
perturbation of the Gaussian random field Tunlensed

⟨TTTT⟩ ∼ Large Gaussian Contribution︸ ︷︷ ︸
Present even if no lensing

+ Lensing Term + . . .

⇒ ⟨κ̂κ̂⟩ ∼ Gaussian Bias + Lensing Power Spectrum + . . .
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Furthermore, there’s extra stuff in our temperature maps
1. Foregrounds (CIB, SZ, . . . )
2. Detector noise (for this talk, will focus on this)

That are added to our maps:

Tℓ = TLensed
ℓ + NDetector

ℓ

This changes ⟨TTTT⟩ by also contributing to the Gaussian bias1:

⇒ ⟨κ̂κ̂⟩ ∼ Noise Bias + Lensing Power Spectrum + . . .

1Generically NDetector is a inhomogeneous non-Gaussian field so has contributions beyond the
“Gaussian noise”, but for upcoming wide-field CMB maps, this detector noise can be expanded around
a homogeneous Gaussian field.
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Lensing Power Spectrum ⟨κκ⟩

⟨κ̂κ̂⟩

Gaussian Bias

On small scales, even a tiny misestimate of Gaussian bias leads to a huge bias in estimated ⟨κκ⟩
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A key challenge in measuring the
CMB lensing spectrum is estimating and
subsequently removing this Gaussian
bias2.

2Stated more generally, we are trying to extract the non-Gaussian component of the 4-point
function. This is a problem that appears generally in cosmology and the method we propose in
principle is applicable to other areas where optimal estimation of the connected trispectrum/4-point
function is of interest such as large scale structure.

17/35



1D analogue of
power spectrum

A quick reminder: For a 1-D Gaussian
random variable X with mean 0 and vari-
ance σ2

18/35



“ Noise Bias”“⟨TTTT⟩”

1D analogue of
power spectrum
and
CMB lensing
spectrum

A toy model for estimating CMB lens-
ing spectra is estimating K ≪ σ4 for a
nearly Gaussian variable X
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The most naive way to remove to
remove this Gaussian bias from ⟨X4⟩

1. Assume some theoretical model for the variance σ2

2. Subtract it from the estimated 4-point function from data ⟨̂X4⟩.

K̂naive = ⟨̂X4⟩ − 3σ4

Features: (1) noisy relative to minimum variance estimator and (2)
maximally sensitivty to theoretical mismodelling
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The optimal way to remove to remove
this Gaussian bias from ⟨X4⟩

1. Assume some theoretical model for the variance σ2

2. Derive the optimal way to combine theoretical model with the
variance estimated from data to estimate the Gaussian bias

3. Subtract it from the estimated 4-point function from data ⟨̂X4⟩.

K̂opt = ⟨̂X4⟩ − 3[σ̂opt(σ
2, data)]4

Features: (1) is the minimum variance estimator but (2) still has
some sensitvity to theoretical mismodelling
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The sta
ndard 

way 

CMB Lensing
 Spectrum

 

estimation i
s done

"RDN(0)"



Limitations of the Standard RDN(0)

▶ Relies on computationaly expensive simulations
▶ Estimated noise bias still sensitive to small errors simulation

▶ Small error in noise bias is still large error in CMB lensing power spectrum

▶ In ACT DR6 (Qu+23), they could not simulate the complex
instrument noise well enough to have unbiased measurements of
the lensing spectrum at L ∼ 800

22/35
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Origin of the Gaussian bias
Recall that

⟨κ̂Lκ̂
∗
L⟩ ∼

∫∫
ℓ,ℓ′

⟨TℓTL−ℓT−ℓ′T−L+ℓ′⟩

▶ Gaussian bias from the 0th order contribution to ⟨TTTT⟩
▶ So in the integral, the Gaussian bias contributions come from terms where

⟨Tunlensed
ℓ Tunlensed

L−ℓ Tunlensed
−ℓ′ Tunlensed

−L+ℓ′ ⟩ ̸= 0 (⋆)

▶ Statistical homogeneity implies that ⟨Tunlensed
ℓ Tunlensed

ℓ′ ⟩ ∼ δ(D)(ℓ+ ℓ′)

▶ Thus, by Eq. (⋆), the Gaussian bias comes from terms in
∫
ℓ,ℓ′

where ℓ = ℓ′
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Our Method: Ignore ℓ = ℓ′ terms
Our estimator of ⟨κκ⟩ ∼

∫∫
ℓ ̸=ℓ′

⟨TℓTL−ℓT−ℓ′T−L+ℓ′⟩

(for practical purposes) ∼
∫∫

ℓ,ℓ′
⟨TℓTL−ℓT−ℓ′T−L+ℓ′⟩︸ ︷︷ ︸
The standard ⟨κ̂κ̂⟩

−
∫
ℓ

⟨TℓTL−ℓT−ℓT−L+ℓ⟩︸ ︷︷ ︸
ℓ=ℓ′ terms

Both components can be computed efficiently using FFT!

24/35



Essentia
lly we avoid the

Gaussian
 bias b

y throw
ing 

away a sm
all sub

set

of our 
data 



Features of our method
▶ Relies only on data thus

1. Very fast to compute relative to standard RDN(0)

2. Completely insensitive to errors in simulations

▶ One can reason using the toy model that the variance of our
method is asymptotically equivalent to the variance of the
the optimal minimum variance estimator.
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1% error on Gaussian Bias
0.1% error on Gaussian Bias

Fr
ac
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In an idealized situation when we understand everything

Lensing Power Spectrum ⟨κκ⟩

Gaussian Bias
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On real data, a key
limitation for
standard methods is
modeling complex
instrument noise
sufficiently
accurately.

27/35



Once we have realistically inhomogeneous instrument noise.

1% error on Gaussian Bias
0.1% error on Gaussian Bias
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Standard RDN(0)

Our Method

Naive Theory Subtraction

.

Requires some assumed
total CMB spectrum.

Hard to get sufficiently
accurate these days
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Conclusion
▶ We propose a novel estimator of the CMB lensing power spectrum which

relies only on data making this estimator
1. Fast to compute
2. Insensitive to errors in simulations and thus unbiased to small scales

▶ This estimator’s noisiness is asymptotically equivalent to the optimal
estimator.

▶ We showed this estimator is robust to the presence realistic complications
like inhomogeneous instrument noise
▶ Can also show our estimator is as robust to masking as standard methods, happy to

talk about this if people interested!
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Extra



Our Method
Recall κ̂L ∼

∫
ℓ

TℓTL−ℓ ∼

...

(Contains contributions to lensing
spectrum and Gaussian bias)

.

(Contains contributions to
lensing spectrum only)

.

Idea: ignore all the quadrilaterals that do contribute to the Gaussian
bias, the parallelograms
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Masking introduces additional
mode couplings and a mean-field
that have to be handled. Here we
show that our method is as good
as the standard method in
presence of masking! So usual
methods to handle additional
mode couplings should still work. 102 103
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In our method we implicitly assume that
noise inhomogeneities can be expanded
perturbatively around a homogeneous limit.
However, once this is not true, for example
in the extreme inhomogeneous noise
scenario, our method breaks down while
the standard RDN(0), which does not make
this assumption, still works. However we
do expect the assumption that noise
inhomogenities are small to hold for
current and upcoming wide-field CMB
maps.
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To intuitively understand the properties
of (1) the current method and (2) the
method we will propose to remove the
Gaussian bias, lets consider a toy
model for optimal trispectrum
estimation3.

3Originally presented in Smith+18

https://arxiv.org/abs/1502.00635


In Toy Model

Consider a generic weakly
non-Gaussian random variable X
with
▶ Zero mean
▶ Some assumed variance σ2

▶ Small kurtosis K ≪ σ4 we
wish to estimate

⟨X2⟩ = σ2

⟨X4⟩ = 3σ4 +K

In CMB Lensing

Consider the lensed CMB
temperature map, a weakly
non-Gaussian random field with
▶ ⟨T ⟩ = 0

▶ Some assumed power
spectrum

▶ Small connected
trispectrum (induced by
lensing) we wish to estimate
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Let {xi} be N independent realizations of the random variable X. Generically, an
estimator of the Kurtosis K will look like

K̂ =
1

N

N∑
i=1

x4i − Ĝ = (Sample 4-pt function)− (Estimate of Gaussian Bias)

Estimate of Gaussian Bias N×Var(K̂) σ2 = σ2
true − ϵ In CMB Lensing

Ĝnaive = 3σ4 96σ8 ∆K ∼ ϵ N(0)
theory

Ĝopt =
6σ2

N
∑

i x2i − 3σ4 24σ8 ∆K ∼ ϵ2 Current Standard

Ĝalt =
3

N(N−1)

∑
i ̸=j x2i x2j 24σ8 + O(1/N) ∆K = 0 Our method
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Ĝalt =
3

N(N−1)

∑
i ̸=j x2i x2j 24σ8 + O(1/N)

∆K = 0 Our method



Let {xi} be N independent realizations of the random variable X. Generically, an
estimator of the Kurtosis K will look like

K̂ =
1

N

N∑
i=1
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In Toy Model

The alternative estimator for
the kurtosis K̂alt has equivalent
performance to optimal kurotsis
estimator for large N but is
completely insensitive to
mismodelling of the variance σ2

In CMB Lensing

Our estimator for the CMB
lensing power spectrum ⟨κκ⟩
asymptotically has equivalent
performance to the optimal
trispectrum estimator but is
completely insensitive to
mismodelling of the observed
CMB temperature power
spectrum.
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In Toy Model

K̂alt =
1

N
∑

i
x4i −

3

N(N − 1)

∑
i ̸=j

x2i x2j

Since xi is statistically independent
from xj when i ̸= j, the second
term yields only the the
disconnected Gaussian bias.

In other words, instead of
assuming some σ2, you estimate it
directly from data.

In CMB Lensing

Recall that

⟨κ̂Lκ̂
∗
L⟩ ∼

∫
ℓ,ℓ′

⟨TℓTL−ℓT−ℓ′T−L+ℓ′⟩

Our propsed estimator generalization of
the toy model’s Kalt

⟨κκ⟩ ∼ ⟨κ̂κ̂⟩ −
∫
ℓ

⟨TℓTL−ℓT−ℓT−L+ℓ⟩

Similar to the toy model case, the second
term contains all the combination of (ℓ, ℓ′)
contributing to

∫
ℓ,ℓ′

which contain a
disconnected Gaussian bias.
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What people usually do to estimate the Gaussian bias

In Toy Model

Ĝopt =
6σ2

N
∑

i
x2i − 3σ4

The optimal way to combine
a theoretical prediction
for variance σ2 and the
sample variance when
estimating the kurtosis

In CMB Lensing

Let κ̂ds be the QE using data for one temperature
map and simulations for the other. Similar for κ̂ss′

RDN(0)
L ≡

〈
CL(κ̂

ds, κ̂ds) + CL(κ̂
ds, κ̂sd)

+CL(κ̂
sd, κ̂ds) + CL(κ̂

sd, κ̂sd)

−(CL(κ̂
ss′ , κ̂ss′) + CL(κ̂

ss′ , κ̂s′s))
〉

s,s′

The optimal way to combine simulations of CMB
maps with realistic complications (instruments
noise, foregrounds, etc.) and actual maps when
estimating the connected trispectrum

For modern data, simulations (1) expensive and (2) require modelling everything to exquisite accuracy
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